LCOV - code coverage report
Current view: top level - bsdsrc - b_exp.c (source / functions) Coverage Total Hit
Test: app.info Lines: 0.0 % 16 0
Test Date: 2024-01-11 15:52:50 Functions: 0.0 % 1 0
Branches: 0.0 % 10 0

             Branch data     Line data    Source code
       1                 :             : /*
       2                 :             :  * Copyright (c) 1985, 1993
       3                 :             :  *      The Regents of the University of California.  All rights reserved.
       4                 :             :  *
       5                 :             :  * Redistribution and use in source and binary forms, with or without
       6                 :             :  * modification, are permitted provided that the following conditions
       7                 :             :  * are met:
       8                 :             :  * 1. Redistributions of source code must retain the above copyright
       9                 :             :  *    notice, this list of conditions and the following disclaimer.
      10                 :             :  * 2. Redistributions in binary form must reproduce the above copyright
      11                 :             :  *    notice, this list of conditions and the following disclaimer in the
      12                 :             :  *    documentation and/or other materials provided with the distribution.
      13                 :             :  * 3. Neither the name of the University nor the names of its contributors
      14                 :             :  *    may be used to endorse or promote products derived from this software
      15                 :             :  *    without specific prior written permission.
      16                 :             :  *
      17                 :             :  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
      18                 :             :  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      19                 :             :  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      20                 :             :  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
      21                 :             :  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
      22                 :             :  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
      23                 :             :  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
      24                 :             :  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
      25                 :             :  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
      26                 :             :  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
      27                 :             :  * SUCH DAMAGE.
      28                 :             :  */
      29                 :             : 
      30                 :             : /* @(#)exp.c    8.1 (Berkeley) 6/4/93 */
      31                 :             : #include "cdefs-compat.h"
      32                 :             : //__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_exp.c,v 1.9 2011/10/16 05:37:20 das Exp $");
      33                 :             : 
      34                 :             : #include <openlibm_math.h>
      35                 :             : 
      36                 :             : /* EXP(X)
      37                 :             :  * RETURN THE EXPONENTIAL OF X
      38                 :             :  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
      39                 :             :  * CODED IN C BY K.C. NG, 1/19/85;
      40                 :             :  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
      41                 :             :  *
      42                 :             :  * Required system supported functions:
      43                 :             :  *      scalb(x,n)
      44                 :             :  *      copysign(x,y)
      45                 :             :  *      finite(x)
      46                 :             :  *
      47                 :             :  * Method:
      48                 :             :  *      1. Argument Reduction: given the input x, find r and integer k such
      49                 :             :  *         that
      50                 :             :  *                         x = k*ln2 + r,  |r| <= 0.5*ln2 .
      51                 :             :  *         r will be represented as r := z+c for better accuracy.
      52                 :             :  *
      53                 :             :  *      2. Compute exp(r) by
      54                 :             :  *
      55                 :             :  *              exp(r) = 1 + r + r*R1/(2-R1),
      56                 :             :  *         where
      57                 :             :  *              R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
      58                 :             :  *
      59                 :             :  *      3. exp(x) = 2^k * exp(r) .
      60                 :             :  *
      61                 :             :  * Special cases:
      62                 :             :  *      exp(INF) is INF, exp(NaN) is NaN;
      63                 :             :  *      exp(-INF)=  0;
      64                 :             :  *      for finite argument, only exp(0)=1 is exact.
      65                 :             :  *
      66                 :             :  * Accuracy:
      67                 :             :  *      exp(x) returns the exponential of x nearly rounded. In a test run
      68                 :             :  *      with 1,156,000 random arguments on a VAX, the maximum observed
      69                 :             :  *      error was 0.869 ulps (units in the last place).
      70                 :             :  */
      71                 :             : 
      72                 :             : #include "mathimpl.h"
      73                 :             : 
      74                 :             : static const double p1 = 0x1.555555555553ep-3;
      75                 :             : static const double p2 = -0x1.6c16c16bebd93p-9;
      76                 :             : static const double p3 = 0x1.1566aaf25de2cp-14;
      77                 :             : static const double p4 = -0x1.bbd41c5d26bf1p-20;
      78                 :             : static const double p5 = 0x1.6376972bea4d0p-25;
      79                 :             : static const double ln2hi = 0x1.62e42fee00000p-1;
      80                 :             : static const double ln2lo = 0x1.a39ef35793c76p-33;
      81                 :             : static const double lnhuge = 0x1.6602b15b7ecf2p9;
      82                 :             : static const double lntiny = -0x1.77af8ebeae354p9;
      83                 :             : static const double invln2 = 0x1.71547652b82fep0;
      84                 :             : 
      85                 :             : #if 0
      86                 :             : OLM_DLLEXPORT double exp(x)
      87                 :             : double x;
      88                 :             : {
      89                 :             :         double  z,hi,lo,c;
      90                 :             :         int k;
      91                 :             : 
      92                 :             : #if !defined(vax)&&!defined(tahoe)
      93                 :             :         if(x!=x) return(x);     /* x is NaN */
      94                 :             : #endif  /* !defined(vax)&&!defined(tahoe) */
      95                 :             :         if( x <= lnhuge ) {
      96                 :             :                 if( x >= lntiny ) {
      97                 :             : 
      98                 :             :                     /* argument reduction : x --> x - k*ln2 */
      99                 :             : 
     100                 :             :                         k=invln2*x+copysign(0.5,x);     /* k=NINT(x/ln2) */
     101                 :             : 
     102                 :             :                     /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
     103                 :             : 
     104                 :             :                         hi=x-k*ln2hi;
     105                 :             :                         x=hi-(lo=k*ln2lo);
     106                 :             : 
     107                 :             :                     /* return 2^k*[1+x+x*c/(2+c)]  */
     108                 :             :                         z=x*x;
     109                 :             :                         c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
     110                 :             :                         return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
     111                 :             : 
     112                 :             :                 }
     113                 :             :                 /* end of x > lntiny */
     114                 :             : 
     115                 :             :                 else
     116                 :             :                      /* exp(-big#) underflows to zero */
     117                 :             :                      if(finite(x))  return(scalb(1.0,-5000));
     118                 :             : 
     119                 :             :                      /* exp(-INF) is zero */
     120                 :             :                      else return(0.0);
     121                 :             :         }
     122                 :             :         /* end of x < lnhuge */
     123                 :             : 
     124                 :             :         else
     125                 :             :         /* exp(INF) is INF, exp(+big#) overflows to INF */
     126                 :             :             return( finite(x) ?  scalb(1.0,5000)  : x);
     127                 :             : }
     128                 :             : #endif
     129                 :             : 
     130                 :             : /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
     131                 :             : 
     132                 :           0 : double __exp__D(x, c)
     133                 :             : double x, c;
     134                 :             : {
     135                 :             :         double  z,hi,lo;
     136                 :             :         int k;
     137                 :             : 
     138         [ #  # ]:           0 :         if (x != x)     /* x is NaN */
     139                 :           0 :                 return(x);
     140         [ #  # ]:           0 :         if ( x <= lnhuge ) {
     141         [ #  # ]:           0 :                 if ( x >= lntiny ) {
     142                 :             : 
     143                 :             :                     /* argument reduction : x --> x - k*ln2 */
     144                 :           0 :                         z = invln2*x;
     145                 :           0 :                         k = z + copysign(.5, x);
     146                 :             : 
     147                 :             :                     /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
     148                 :             : 
     149                 :           0 :                         hi=(x-k*ln2hi);                 /* Exact. */
     150                 :           0 :                         x= hi - (lo = k*ln2lo-c);
     151                 :             :                     /* return 2^k*[1+x+x*c/(2+c)]  */
     152                 :           0 :                         z=x*x;
     153                 :           0 :                         c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
     154                 :           0 :                         c = (x*c)/(2.0-c);
     155                 :             : 
     156                 :           0 :                         return  scalbn(1.+(hi-(lo - c)), k);
     157                 :             :                 }
     158                 :             :                 /* end of x > lntiny */
     159                 :             : 
     160                 :             :                 else
     161                 :             :                      /* exp(-big#) underflows to zero */
     162         [ #  # ]:           0 :                      if(isfinite(x))  return(scalbn(1.0,-5000));
     163                 :             : 
     164                 :             :                      /* exp(-INF) is zero */
     165                 :           0 :                      else return(0.0);
     166                 :             :         }
     167                 :             :         /* end of x < lnhuge */
     168                 :             : 
     169                 :             :         else
     170                 :             :         /* exp(INF) is INF, exp(+big#) overflows to INF */
     171         [ #  # ]:           0 :             return( isfinite(x) ?  scalbn(1.0,5000)  : x);
     172                 :             : }
        

Generated by: LCOV version 2.0-115.g950771e