LCOV - code coverage report
Current view: top level - bsdsrc - b_log.c (source / functions) Coverage Total Hit
Test: app.info Lines: 0.0 % 24 0
Test Date: 2024-01-11 15:52:50 Functions: 0.0 % 1 0
Branches: 0.0 % 4 0

             Branch data     Line data    Source code
       1                 :             : /*
       2                 :             :  * Copyright (c) 1992, 1993
       3                 :             :  *      The Regents of the University of California.  All rights reserved.
       4                 :             :  *
       5                 :             :  * Redistribution and use in source and binary forms, with or without
       6                 :             :  * modification, are permitted provided that the following conditions
       7                 :             :  * are met:
       8                 :             :  * 1. Redistributions of source code must retain the above copyright
       9                 :             :  *    notice, this list of conditions and the following disclaimer.
      10                 :             :  * 2. Redistributions in binary form must reproduce the above copyright
      11                 :             :  *    notice, this list of conditions and the following disclaimer in the
      12                 :             :  *    documentation and/or other materials provided with the distribution.
      13                 :             :  * 3. Neither the name of the University nor the names of its contributors
      14                 :             :  *    may be used to endorse or promote products derived from this software
      15                 :             :  *    without specific prior written permission.
      16                 :             :  *
      17                 :             :  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
      18                 :             :  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      19                 :             :  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      20                 :             :  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
      21                 :             :  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
      22                 :             :  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
      23                 :             :  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
      24                 :             :  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
      25                 :             :  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
      26                 :             :  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
      27                 :             :  * SUCH DAMAGE.
      28                 :             :  */
      29                 :             : 
      30                 :             : /* @(#)log.c    8.2 (Berkeley) 11/30/93 */
      31                 :             : #include "cdefs-compat.h"
      32                 :             : //__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_log.c,v 1.9 2008/02/22 02:26:51 das Exp $");
      33                 :             : 
      34                 :             : #include <openlibm_math.h>
      35                 :             : 
      36                 :             : #include "mathimpl.h"
      37                 :             : 
      38                 :             : /* Table-driven natural logarithm.
      39                 :             :  *
      40                 :             :  * This code was derived, with minor modifications, from:
      41                 :             :  *      Peter Tang, "Table-Driven Implementation of the
      42                 :             :  *      Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
      43                 :             :  *      Math Software, vol 16. no 4, pp 378-400, Dec 1990).
      44                 :             :  *
      45                 :             :  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
      46                 :             :  * where F = j/128 for j an integer in [0, 128].
      47                 :             :  *
      48                 :             :  * log(2^m) = log2_hi*m + log2_tail*m
      49                 :             :  * since m is an integer, the dominant term is exact.
      50                 :             :  * m has at most 10 digits (for subnormal numbers),
      51                 :             :  * and log2_hi has 11 trailing zero bits.
      52                 :             :  *
      53                 :             :  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
      54                 :             :  * logF_hi[] + 512 is exact.
      55                 :             :  *
      56                 :             :  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
      57                 :             :  * the leading term is calculated to extra precision in two
      58                 :             :  * parts, the larger of which adds exactly to the dominant
      59                 :             :  * m and F terms.
      60                 :             :  * There are two cases:
      61                 :             :  *      1. when m, j are non-zero (m | j), use absolute
      62                 :             :  *         precision for the leading term.
      63                 :             :  *      2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
      64                 :             :  *         In this case, use a relative precision of 24 bits.
      65                 :             :  * (This is done differently in the original paper)
      66                 :             :  *
      67                 :             :  * Special cases:
      68                 :             :  *      0       return signalling -Inf
      69                 :             :  *      neg     return signalling NaN
      70                 :             :  *      +Inf    return +Inf
      71                 :             : */
      72                 :             : 
      73                 :             : #define N 128
      74                 :             : 
      75                 :             : /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
      76                 :             :  * Used for generation of extend precision logarithms.
      77                 :             :  * The constant 35184372088832 is 2^45, so the divide is exact.
      78                 :             :  * It ensures correct reading of logF_head, even for inaccurate
      79                 :             :  * decimal-to-binary conversion routines.  (Everybody gets the
      80                 :             :  * right answer for integers less than 2^53.)
      81                 :             :  * Values for log(F) were generated using error < 10^-57 absolute
      82                 :             :  * with the bc -l package.
      83                 :             : */
      84                 :             : static double   A1 =      .08333333333333178827;
      85                 :             : static double   A2 =      .01250000000377174923;
      86                 :             : static double   A3 =     .002232139987919447809;
      87                 :             : static double   A4 =    .0004348877777076145742;
      88                 :             : 
      89                 :             : static double logF_head[N+1] = {
      90                 :             :         0.,
      91                 :             :         .007782140442060381246,
      92                 :             :         .015504186535963526694,
      93                 :             :         .023167059281547608406,
      94                 :             :         .030771658666765233647,
      95                 :             :         .038318864302141264488,
      96                 :             :         .045809536031242714670,
      97                 :             :         .053244514518837604555,
      98                 :             :         .060624621816486978786,
      99                 :             :         .067950661908525944454,
     100                 :             :         .075223421237524235039,
     101                 :             :         .082443669210988446138,
     102                 :             :         .089612158689760690322,
     103                 :             :         .096729626458454731618,
     104                 :             :         .103796793681567578460,
     105                 :             :         .110814366340264314203,
     106                 :             :         .117783035656430001836,
     107                 :             :         .124703478501032805070,
     108                 :             :         .131576357788617315236,
     109                 :             :         .138402322859292326029,
     110                 :             :         .145182009844575077295,
     111                 :             :         .151916042025732167530,
     112                 :             :         .158605030176659056451,
     113                 :             :         .165249572895390883786,
     114                 :             :         .171850256926518341060,
     115                 :             :         .178407657472689606947,
     116                 :             :         .184922338493834104156,
     117                 :             :         .191394852999565046047,
     118                 :             :         .197825743329758552135,
     119                 :             :         .204215541428766300668,
     120                 :             :         .210564769107350002741,
     121                 :             :         .216873938300523150246,
     122                 :             :         .223143551314024080056,
     123                 :             :         .229374101064877322642,
     124                 :             :         .235566071312860003672,
     125                 :             :         .241719936886966024758,
     126                 :             :         .247836163904594286577,
     127                 :             :         .253915209980732470285,
     128                 :             :         .259957524436686071567,
     129                 :             :         .265963548496984003577,
     130                 :             :         .271933715484010463114,
     131                 :             :         .277868451003087102435,
     132                 :             :         .283768173130738432519,
     133                 :             :         .289633292582948342896,
     134                 :             :         .295464212893421063199,
     135                 :             :         .301261330578199704177,
     136                 :             :         .307025035294827830512,
     137                 :             :         .312755710004239517729,
     138                 :             :         .318453731118097493890,
     139                 :             :         .324119468654316733591,
     140                 :             :         .329753286372579168528,
     141                 :             :         .335355541920762334484,
     142                 :             :         .340926586970454081892,
     143                 :             :         .346466767346100823488,
     144                 :             :         .351976423156884266063,
     145                 :             :         .357455888922231679316,
     146                 :             :         .362905493689140712376,
     147                 :             :         .368325561158599157352,
     148                 :             :         .373716409793814818840,
     149                 :             :         .379078352934811846353,
     150                 :             :         .384411698910298582632,
     151                 :             :         .389716751140440464951,
     152                 :             :         .394993808240542421117,
     153                 :             :         .400243164127459749579,
     154                 :             :         .405465108107819105498,
     155                 :             :         .410659924985338875558,
     156                 :             :         .415827895143593195825,
     157                 :             :         .420969294644237379543,
     158                 :             :         .426084395310681429691,
     159                 :             :         .431173464818130014464,
     160                 :             :         .436236766774527495726,
     161                 :             :         .441274560805140936281,
     162                 :             :         .446287102628048160113,
     163                 :             :         .451274644139630254358,
     164                 :             :         .456237433481874177232,
     165                 :             :         .461175715122408291790,
     166                 :             :         .466089729924533457960,
     167                 :             :         .470979715219073113985,
     168                 :             :         .475845904869856894947,
     169                 :             :         .480688529345570714212,
     170                 :             :         .485507815781602403149,
     171                 :             :         .490303988045525329653,
     172                 :             :         .495077266798034543171,
     173                 :             :         .499827869556611403822,
     174                 :             :         .504556010751912253908,
     175                 :             :         .509261901790523552335,
     176                 :             :         .513945751101346104405,
     177                 :             :         .518607764208354637958,
     178                 :             :         .523248143765158602036,
     179                 :             :         .527867089620485785417,
     180                 :             :         .532464798869114019908,
     181                 :             :         .537041465897345915436,
     182                 :             :         .541597282432121573947,
     183                 :             :         .546132437597407260909,
     184                 :             :         .550647117952394182793,
     185                 :             :         .555141507540611200965,
     186                 :             :         .559615787935399566777,
     187                 :             :         .564070138285387656651,
     188                 :             :         .568504735352689749561,
     189                 :             :         .572919753562018740922,
     190                 :             :         .577315365035246941260,
     191                 :             :         .581691739635061821900,
     192                 :             :         .586049045003164792433,
     193                 :             :         .590387446602107957005,
     194                 :             :         .594707107746216934174,
     195                 :             :         .599008189645246602594,
     196                 :             :         .603290851438941899687,
     197                 :             :         .607555250224322662688,
     198                 :             :         .611801541106615331955,
     199                 :             :         .616029877215623855590,
     200                 :             :         .620240409751204424537,
     201                 :             :         .624433288012369303032,
     202                 :             :         .628608659422752680256,
     203                 :             :         .632766669570628437213,
     204                 :             :         .636907462236194987781,
     205                 :             :         .641031179420679109171,
     206                 :             :         .645137961373620782978,
     207                 :             :         .649227946625615004450,
     208                 :             :         .653301272011958644725,
     209                 :             :         .657358072709030238911,
     210                 :             :         .661398482245203922502,
     211                 :             :         .665422632544505177065,
     212                 :             :         .669430653942981734871,
     213                 :             :         .673422675212350441142,
     214                 :             :         .677398823590920073911,
     215                 :             :         .681359224807238206267,
     216                 :             :         .685304003098281100392,
     217                 :             :         .689233281238557538017,
     218                 :             :         .693147180560117703862
     219                 :             : };
     220                 :             : 
     221                 :             : static double logF_tail[N+1] = {
     222                 :             :         0.,
     223                 :             :         -.00000000000000543229938420049,
     224                 :             :          .00000000000000172745674997061,
     225                 :             :         -.00000000000001323017818229233,
     226                 :             :         -.00000000000001154527628289872,
     227                 :             :         -.00000000000000466529469958300,
     228                 :             :          .00000000000005148849572685810,
     229                 :             :         -.00000000000002532168943117445,
     230                 :             :         -.00000000000005213620639136504,
     231                 :             :         -.00000000000001819506003016881,
     232                 :             :          .00000000000006329065958724544,
     233                 :             :          .00000000000008614512936087814,
     234                 :             :         -.00000000000007355770219435028,
     235                 :             :          .00000000000009638067658552277,
     236                 :             :          .00000000000007598636597194141,
     237                 :             :          .00000000000002579999128306990,
     238                 :             :         -.00000000000004654729747598444,
     239                 :             :         -.00000000000007556920687451336,
     240                 :             :          .00000000000010195735223708472,
     241                 :             :         -.00000000000017319034406422306,
     242                 :             :         -.00000000000007718001336828098,
     243                 :             :          .00000000000010980754099855238,
     244                 :             :         -.00000000000002047235780046195,
     245                 :             :         -.00000000000008372091099235912,
     246                 :             :          .00000000000014088127937111135,
     247                 :             :          .00000000000012869017157588257,
     248                 :             :          .00000000000017788850778198106,
     249                 :             :          .00000000000006440856150696891,
     250                 :             :          .00000000000016132822667240822,
     251                 :             :         -.00000000000007540916511956188,
     252                 :             :         -.00000000000000036507188831790,
     253                 :             :          .00000000000009120937249914984,
     254                 :             :          .00000000000018567570959796010,
     255                 :             :         -.00000000000003149265065191483,
     256                 :             :         -.00000000000009309459495196889,
     257                 :             :          .00000000000017914338601329117,
     258                 :             :         -.00000000000001302979717330866,
     259                 :             :          .00000000000023097385217586939,
     260                 :             :          .00000000000023999540484211737,
     261                 :             :          .00000000000015393776174455408,
     262                 :             :         -.00000000000036870428315837678,
     263                 :             :          .00000000000036920375082080089,
     264                 :             :         -.00000000000009383417223663699,
     265                 :             :          .00000000000009433398189512690,
     266                 :             :          .00000000000041481318704258568,
     267                 :             :         -.00000000000003792316480209314,
     268                 :             :          .00000000000008403156304792424,
     269                 :             :         -.00000000000034262934348285429,
     270                 :             :          .00000000000043712191957429145,
     271                 :             :         -.00000000000010475750058776541,
     272                 :             :         -.00000000000011118671389559323,
     273                 :             :          .00000000000037549577257259853,
     274                 :             :          .00000000000013912841212197565,
     275                 :             :          .00000000000010775743037572640,
     276                 :             :          .00000000000029391859187648000,
     277                 :             :         -.00000000000042790509060060774,
     278                 :             :          .00000000000022774076114039555,
     279                 :             :          .00000000000010849569622967912,
     280                 :             :         -.00000000000023073801945705758,
     281                 :             :          .00000000000015761203773969435,
     282                 :             :          .00000000000003345710269544082,
     283                 :             :         -.00000000000041525158063436123,
     284                 :             :          .00000000000032655698896907146,
     285                 :             :         -.00000000000044704265010452446,
     286                 :             :          .00000000000034527647952039772,
     287                 :             :         -.00000000000007048962392109746,
     288                 :             :          .00000000000011776978751369214,
     289                 :             :         -.00000000000010774341461609578,
     290                 :             :          .00000000000021863343293215910,
     291                 :             :          .00000000000024132639491333131,
     292                 :             :          .00000000000039057462209830700,
     293                 :             :         -.00000000000026570679203560751,
     294                 :             :          .00000000000037135141919592021,
     295                 :             :         -.00000000000017166921336082431,
     296                 :             :         -.00000000000028658285157914353,
     297                 :             :         -.00000000000023812542263446809,
     298                 :             :          .00000000000006576659768580062,
     299                 :             :         -.00000000000028210143846181267,
     300                 :             :          .00000000000010701931762114254,
     301                 :             :          .00000000000018119346366441110,
     302                 :             :          .00000000000009840465278232627,
     303                 :             :         -.00000000000033149150282752542,
     304                 :             :         -.00000000000018302857356041668,
     305                 :             :         -.00000000000016207400156744949,
     306                 :             :          .00000000000048303314949553201,
     307                 :             :         -.00000000000071560553172382115,
     308                 :             :          .00000000000088821239518571855,
     309                 :             :         -.00000000000030900580513238244,
     310                 :             :         -.00000000000061076551972851496,
     311                 :             :          .00000000000035659969663347830,
     312                 :             :          .00000000000035782396591276383,
     313                 :             :         -.00000000000046226087001544578,
     314                 :             :          .00000000000062279762917225156,
     315                 :             :          .00000000000072838947272065741,
     316                 :             :          .00000000000026809646615211673,
     317                 :             :         -.00000000000010960825046059278,
     318                 :             :          .00000000000002311949383800537,
     319                 :             :         -.00000000000058469058005299247,
     320                 :             :         -.00000000000002103748251144494,
     321                 :             :         -.00000000000023323182945587408,
     322                 :             :         -.00000000000042333694288141916,
     323                 :             :         -.00000000000043933937969737844,
     324                 :             :          .00000000000041341647073835565,
     325                 :             :          .00000000000006841763641591466,
     326                 :             :          .00000000000047585534004430641,
     327                 :             :          .00000000000083679678674757695,
     328                 :             :         -.00000000000085763734646658640,
     329                 :             :          .00000000000021913281229340092,
     330                 :             :         -.00000000000062242842536431148,
     331                 :             :         -.00000000000010983594325438430,
     332                 :             :          .00000000000065310431377633651,
     333                 :             :         -.00000000000047580199021710769,
     334                 :             :         -.00000000000037854251265457040,
     335                 :             :          .00000000000040939233218678664,
     336                 :             :          .00000000000087424383914858291,
     337                 :             :          .00000000000025218188456842882,
     338                 :             :         -.00000000000003608131360422557,
     339                 :             :         -.00000000000050518555924280902,
     340                 :             :          .00000000000078699403323355317,
     341                 :             :         -.00000000000067020876961949060,
     342                 :             :          .00000000000016108575753932458,
     343                 :             :          .00000000000058527188436251509,
     344                 :             :         -.00000000000035246757297904791,
     345                 :             :         -.00000000000018372084495629058,
     346                 :             :          .00000000000088606689813494916,
     347                 :             :          .00000000000066486268071468700,
     348                 :             :          .00000000000063831615170646519,
     349                 :             :          .00000000000025144230728376072,
     350                 :             :         -.00000000000017239444525614834
     351                 :             : };
     352                 :             : 
     353                 :             : #if 0
     354                 :             : OLM_DLLEXPORT double
     355                 :             : #ifdef _ANSI_SOURCE
     356                 :             : log(double x)
     357                 :             : #else
     358                 :             : log(x) double x;
     359                 :             : #endif
     360                 :             : {
     361                 :             :         int m, j;
     362                 :             :         double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
     363                 :             :         volatile double u1;
     364                 :             : 
     365                 :             :         /* Catch special cases */
     366                 :             :         if (x <= 0)
     367                 :             :                 if (x == zero)  /* log(0) = -Inf */
     368                 :             :                         return (-one/zero);
     369                 :             :                 else            /* log(neg) = NaN */
     370                 :             :                         return (zero/zero);
     371                 :             :         else if (!finite(x))
     372                 :             :                 return (x+x);           /* x = NaN, Inf */
     373                 :             : 
     374                 :             :         /* Argument reduction: 1 <= g < 2; x/2^m = g;     */
     375                 :             :         /* y = F*(1 + f/F) for |f| <= 2^-8           */
     376                 :             : 
     377                 :             :         m = logb(x);
     378                 :             :         g = ldexp(x, -m);
     379                 :             :         if (m == -1022) {
     380                 :             :                 j = logb(g), m += j;
     381                 :             :                 g = ldexp(g, -j);
     382                 :             :         }
     383                 :             :         j = N*(g-1) + .5;
     384                 :             :         F = (1.0/N) * j + 1;    /* F*128 is an integer in [128, 512] */
     385                 :             :         f = g - F;
     386                 :             : 
     387                 :             :         /* Approximate expansion for log(1+f/F) ~= u + q */
     388                 :             :         g = 1/(2*F+f);
     389                 :             :         u = 2*f*g;
     390                 :             :         v = u*u;
     391                 :             :         q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
     392                 :             : 
     393                 :             :     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
     394                 :             :      *         u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
     395                 :             :      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
     396                 :             :     */
     397                 :             :         if (m | j)
     398                 :             :                 u1 = u + 513, u1 -= 513;
     399                 :             : 
     400                 :             :     /* case 2:  |1-x| < 1/256. The m- and j- dependent terms are zero;
     401                 :             :      *          u1 = u to 24 bits.
     402                 :             :     */
     403                 :             :         else
     404                 :             :                 u1 = u, TRUNC(u1);
     405                 :             :         u2 = (2.0*(f - F*u1) - u1*f) * g;
     406                 :             :                         /* u1 + u2 = 2f/(2F+f) to extra precision.      */
     407                 :             : 
     408                 :             :         /* log(x) = log(2^m*F*(1+f/F)) =                                */
     409                 :             :         /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);    */
     410                 :             :         /* (exact) + (tiny)                                             */
     411                 :             : 
     412                 :             :         u1 += m*logF_head[N] + logF_head[j];            /* exact */
     413                 :             :         u2 = (u2 + logF_tail[j]) + q;                   /* tiny */
     414                 :             :         u2 += logF_tail[N]*m;
     415                 :             :         return (u1 + u2);
     416                 :             : }
     417                 :             : #endif
     418                 :             : 
     419                 :             : /*
     420                 :             :  * Extra precision variant, returning struct {double a, b;};
     421                 :             :  * log(x) = a+b to 63 bits, with a rounded to 26 bits.
     422                 :             :  */
     423                 :             : struct Double
     424                 :             : #ifdef _ANSI_SOURCE
     425                 :             : __log__D(double x)
     426                 :             : #else
     427                 :           0 : __log__D(x) double x;
     428                 :             : #endif
     429                 :             : {
     430                 :             :         int m, j;
     431                 :             :         double F, f, g, q, u, v, u2;
     432                 :             :         volatile double u1;
     433                 :             :         struct Double r;
     434                 :             : 
     435                 :             :         /* Argument reduction: 1 <= g < 2; x/2^m = g;     */
     436                 :             :         /* y = F*(1 + f/F) for |f| <= 2^-8           */
     437                 :             : 
     438                 :           0 :         m = logb(x);
     439                 :           0 :         g = ldexp(x, -m);
     440         [ #  # ]:           0 :         if (m == -1022) {
     441                 :           0 :                 j = logb(g), m += j;
     442                 :           0 :                 g = ldexp(g, -j);
     443                 :             :         }
     444                 :           0 :         j = N*(g-1) + .5;
     445                 :           0 :         F = (1.0/N) * j + 1;
     446                 :           0 :         f = g - F;
     447                 :             : 
     448                 :           0 :         g = 1/(2*F+f);
     449                 :           0 :         u = 2*f*g;
     450                 :           0 :         v = u*u;
     451                 :           0 :         q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
     452         [ #  # ]:           0 :         if (m | j)
     453                 :           0 :                 u1 = u + 513, u1 -= 513;
     454                 :             :         else
     455                 :           0 :                 u1 = u, TRUNC(u1);
     456                 :           0 :         u2 = (2.0*(f - F*u1) - u1*f) * g;
     457                 :             : 
     458                 :           0 :         u1 += m*logF_head[N] + logF_head[j];
     459                 :             : 
     460                 :           0 :         u2 +=  logF_tail[j]; u2 += q;
     461                 :           0 :         u2 += logF_tail[N]*m;
     462                 :           0 :         r.a = u1 + u2;                  /* Only difference is here */
     463                 :           0 :         TRUNC(r.a);
     464                 :           0 :         r.b = (u1 - r.a) + u2;
     465                 :           0 :         return (r);
     466                 :             : }
        

Generated by: LCOV version 2.0-115.g950771e