Branch data Line data Source code
1 : : /* From: @(#)k_cos.c 1.3 95/01/18 */
2 : : /*
3 : : * ====================================================
4 : : * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 : : * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
6 : : *
7 : : * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 : : * Permission to use, copy, modify, and distribute this
9 : : * software is freely granted, provided that this notice
10 : : * is preserved.
11 : : * ====================================================
12 : : */
13 : :
14 : : #include "cdefs-compat.h"
15 : : //__FBSDID("$FreeBSD: src/lib/msun/ld80/k_cosl.c,v 1.1 2008/02/17 07:32:14 das Exp $");
16 : :
17 : : /*
18 : : * ld80 version of k_cos.c. See ../src/k_cos.c for most comments.
19 : : */
20 : :
21 : : #include "math_private.h"
22 : :
23 : : /*
24 : : * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
25 : : * |cos(x) - c(x)| < 2**-75.1
26 : : *
27 : : * The coefficients of c(x) were generated by a pari-gp script using
28 : : * a Remez algorithm that searches for the best higher coefficients
29 : : * after rounding leading coefficients to a specified precision.
30 : : *
31 : : * Simpler methods like Chebyshev or basic Remez barely suffice for
32 : : * cos() in 64-bit precision, because we want the coefficient of x^2
33 : : * to be precisely -0.5 so that multiplying by it is exact, and plain
34 : : * rounding of the coefficients of a good polynomial approximation only
35 : : * gives this up to about 64-bit precision. Plain rounding also gives
36 : : * a mediocre approximation for the coefficient of x^4, but a rounding
37 : : * error of 0.5 ulps for this coefficient would only contribute ~0.01
38 : : * ulps to the final error, so this is unimportant. Rounding errors in
39 : : * higher coefficients are even less important.
40 : : *
41 : : * In fact, coefficients above the x^4 one only need to have 53-bit
42 : : * precision, and this is more efficient. We get this optimization
43 : : * almost for free from the complications needed to search for the best
44 : : * higher coefficients.
45 : : */
46 : : static const double
47 : : one = 1.0;
48 : :
49 : : #if defined(__amd64__) || defined(__i386__)
50 : : /* Long double constants are slow on these arches, and broken on i386. */
51 : : static const volatile double
52 : : C1hi = 0.041666666666666664, /* 0x15555555555555.0p-57 */
53 : : C1lo = 2.2598839032744733e-18; /* 0x14d80000000000.0p-111 */
54 : : #define C1 ((long double)C1hi + C1lo)
55 : : #else
56 : : static const long double
57 : : C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */
58 : : #endif
59 : :
60 : : static const double
61 : : C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
62 : : C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */
63 : : C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */
64 : : C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */
65 : : C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */
66 : : C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */
67 : :
68 : : long double
69 : 0 : __kernel_cosl(long double x, long double y)
70 : : {
71 : : long double hz,z,r,w;
72 : :
73 : 0 : z = x*x;
74 : 0 : r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))));
75 : 0 : hz = 0.5*z;
76 : 0 : w = one-hz;
77 : 0 : return w + (((one-w)-hz) + (z*r-x*y));
78 : : }
|