LCOV - code coverage report
Current view: top level - src - e_log.c (source / functions) Coverage Total Hit
Test: app.info Lines: 87.8 % 41 36
Test Date: 2024-01-11 15:52:50 Functions: 100.0 % 1 1
Branches: 72.7 % 22 16

             Branch data     Line data    Source code
       1                 :             : 
       2                 :             : /* @(#)e_log.c 1.3 95/01/18 */
       3                 :             : /*
       4                 :             :  * ====================================================
       5                 :             :  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       6                 :             :  *
       7                 :             :  * Developed at SunSoft, a Sun Microsystems, Inc. business.
       8                 :             :  * Permission to use, copy, modify, and distribute this
       9                 :             :  * software is freely granted, provided that this notice 
      10                 :             :  * is preserved.
      11                 :             :  * ====================================================
      12                 :             :  */
      13                 :             : 
      14                 :             : #include "cdefs-compat.h"
      15                 :             : //__FBSDID("$FreeBSD: src/lib/msun/src/e_log.c,v 1.15 2008/03/29 16:37:59 das Exp $");
      16                 :             : 
      17                 :             : /* __ieee754_log(x)
      18                 :             :  * Return the logrithm of x
      19                 :             :  *
      20                 :             :  * Method :                  
      21                 :             :  *   1. Argument Reduction: find k and f such that 
      22                 :             :  *                      x = 2^k * (1+f), 
      23                 :             :  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
      24                 :             :  *
      25                 :             :  *   2. Approximation of log(1+f).
      26                 :             :  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
      27                 :             :  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
      28                 :             :  *               = 2s + s*R
      29                 :             :  *      We use a special Reme algorithm on [0,0.1716] to generate 
      30                 :             :  *      a polynomial of degree 14 to approximate R The maximum error 
      31                 :             :  *      of this polynomial approximation is bounded by 2**-58.45. In
      32                 :             :  *      other words,
      33                 :             :  *                      2      4      6      8      10      12      14
      34                 :             :  *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
      35                 :             :  *      (the values of Lg1 to Lg7 are listed in the program)
      36                 :             :  *      and
      37                 :             :  *          |      2          14          |     -58.45
      38                 :             :  *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2 
      39                 :             :  *          |                             |
      40                 :             :  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
      41                 :             :  *      In order to guarantee error in log below 1ulp, we compute log
      42                 :             :  *      by
      43                 :             :  *              log(1+f) = f - s*(f - R)        (if f is not too large)
      44                 :             :  *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
      45                 :             :  *      
      46                 :             :  *      3. Finally,  log(x) = k*ln2 + log(1+f).  
      47                 :             :  *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
      48                 :             :  *         Here ln2 is split into two floating point number: 
      49                 :             :  *                      ln2_hi + ln2_lo,
      50                 :             :  *         where n*ln2_hi is always exact for |n| < 2000.
      51                 :             :  *
      52                 :             :  * Special cases:
      53                 :             :  *      log(x) is NaN with signal if x < 0 (including -INF) ; 
      54                 :             :  *      log(+INF) is +INF; log(0) is -INF with signal;
      55                 :             :  *      log(NaN) is that NaN with no signal.
      56                 :             :  *
      57                 :             :  * Accuracy:
      58                 :             :  *      according to an error analysis, the error is always less than
      59                 :             :  *      1 ulp (unit in the last place).
      60                 :             :  *
      61                 :             :  * Constants:
      62                 :             :  * The hexadecimal values are the intended ones for the following 
      63                 :             :  * constants. The decimal values may be used, provided that the 
      64                 :             :  * compiler will convert from decimal to binary accurately enough 
      65                 :             :  * to produce the hexadecimal values shown.
      66                 :             :  */
      67                 :             : 
      68                 :             : #include <float.h>
      69                 :             : #include <openlibm_math.h>
      70                 :             : 
      71                 :             : #include "math_private.h"
      72                 :             : 
      73                 :             : static const double
      74                 :             : ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
      75                 :             : ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
      76                 :             : two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
      77                 :             : Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
      78                 :             : Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
      79                 :             : Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
      80                 :             : Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
      81                 :             : Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
      82                 :             : Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
      83                 :             : Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
      84                 :             : 
      85                 :             : static const double zero   =  0.0;
      86                 :             : 
      87                 :             : OLM_DLLEXPORT double
      88                 :          63 : __ieee754_log(double x)
      89                 :             : {
      90                 :             :         double hfsq,f,s,z,R,w,t1,t2,dk;
      91                 :             :         int32_t k,hx,i,j;
      92                 :             :         u_int32_t lx;
      93                 :             : 
      94                 :          63 :         EXTRACT_WORDS(hx,lx,x);
      95                 :             : 
      96                 :          63 :         k=0;
      97         [ +  + ]:          63 :         if (hx < 0x00100000) {                       /* x < 2**-1022  */
      98         [ +  + ]:           3 :             if (((hx&0x7fffffff)|lx)==0) 
      99                 :           2 :                 return -two54/zero;             /* log(+-0)=-inf */
     100         [ +  - ]:           1 :             if (hx<0) return (x-x)/zero;     /* log(-#) = NaN */
     101                 :           0 :             k -= 54; x *= two54; /* subnormal number, scale up x */
     102                 :           0 :             GET_HIGH_WORD(hx,x);
     103                 :             :         } 
     104         [ +  + ]:          60 :         if (hx >= 0x7ff00000) return x+x;
     105                 :          59 :         k += (hx>>20)-1023;
     106                 :          59 :         hx &= 0x000fffff;
     107                 :          59 :         i = (hx+0x95f64)&0x100000;
     108                 :          59 :         SET_HIGH_WORD(x,hx|(i^0x3ff00000));     /* normalize x or x/2 */
     109                 :          59 :         k += (i>>20);
     110                 :          59 :         f = x-1.0;
     111         [ +  + ]:          59 :         if((0x000fffff&(2+hx))<3) {      /* -2**-20 <= f < 2**-20 */
     112         [ +  - ]:          20 :             if(f==zero) {
     113         [ +  + ]:          20 :                 if(k==0) {
     114                 :          13 :                     return zero;
     115                 :             :                 } else {
     116                 :           7 :                     dk=(double)k;
     117                 :           7 :                     return dk*ln2_hi+dk*ln2_lo;
     118                 :             :                 }
     119                 :             :             }
     120                 :           0 :             R = f*f*(0.5-0.33333333333333333*f);
     121         [ #  # ]:           0 :             if(k==0) return f-R; else {dk=(double)k;
     122                 :           0 :                      return dk*ln2_hi-((R-dk*ln2_lo)-f);}
     123                 :             :         }
     124                 :          39 :         s = f/(2.0+f); 
     125                 :          39 :         dk = (double)k;
     126                 :          39 :         z = s*s;
     127                 :          39 :         i = hx-0x6147a;
     128                 :          39 :         w = z*z;
     129                 :          39 :         j = 0x6b851-hx;
     130                 :          39 :         t1= w*(Lg2+w*(Lg4+w*Lg6)); 
     131                 :          39 :         t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 
     132                 :          39 :         i |= j;
     133                 :          39 :         R = t2+t1;
     134         [ +  + ]:          39 :         if(i>0) {
     135                 :          10 :             hfsq=0.5*f*f;
     136         [ -  + ]:          10 :             if(k==0) return f-(hfsq-s*(hfsq+R)); else
     137                 :          10 :                      return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
     138                 :             :         } else {
     139         [ -  + ]:          29 :             if(k==0) return f-s*(f-R); else
     140                 :          29 :                      return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
     141                 :             :         }
     142                 :             : }
     143                 :             : 
     144                 :             : #if (LDBL_MANT_DIG == 53)
     145                 :             : openlibm_weak_reference(log, logl);
     146                 :             : #endif
        

Generated by: LCOV version 2.0-115.g950771e