Branch data Line data Source code
1 : : /*-
2 : : * Copyright (c) 2011 David Schultz <das@FreeBSD.ORG>
3 : : * All rights reserved.
4 : : *
5 : : * Redistribution and use in source and binary forms, with or without
6 : : * modification, are permitted provided that the following conditions
7 : : * are met:
8 : : * 1. Redistributions of source code must retain the above copyright
9 : : * notice, this list of conditions and the following disclaimer.
10 : : * 2. Redistributions in binary form must reproduce the above copyright
11 : : * notice, this list of conditions and the following disclaimer in the
12 : : * documentation and/or other materials provided with the distribution.
13 : : *
14 : : * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 : : * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 : : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 : : * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 : : * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 : : * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 : : * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 : : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 : : * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 : : * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 : : * SUCH DAMAGE.
25 : : */
26 : :
27 : : #include "cdefs-compat.h"
28 : : //__FBSDID("$FreeBSD: src/lib/msun/src/k_exp.c,v 1.1 2011/10/21 06:27:56 das Exp $");
29 : :
30 : : #include <openlibm_complex.h>
31 : : #include <openlibm_math.h>
32 : :
33 : : #include "math_private.h"
34 : :
35 : : static const u_int32_t k = 1799; /* constant for reduction */
36 : : static const double kln2 = 1246.97177782734161156; /* k * ln2 */
37 : :
38 : : /*
39 : : * Compute exp(x), scaled to avoid spurious overflow. An exponent is
40 : : * returned separately in 'expt'.
41 : : *
42 : : * Input: ln(DBL_MAX) <= x < ln(2 * DBL_MAX / DBL_MIN_DENORM) ~= 1454.91
43 : : * Output: 2**1023 <= y < 2**1024
44 : : */
45 : : static double
46 : 0 : __frexp_exp(double x, int *expt)
47 : : {
48 : : double exp_x;
49 : : u_int32_t hx;
50 : :
51 : : /*
52 : : * We use exp(x) = exp(x - kln2) * 2**k, carefully chosen to
53 : : * minimize |exp(kln2) - 2**k|. We also scale the exponent of
54 : : * exp_x to MAX_EXP so that the result can be multiplied by
55 : : * a tiny number without losing accuracy due to denormalization.
56 : : */
57 : 0 : exp_x = exp(x - kln2);
58 : 0 : GET_HIGH_WORD(hx, exp_x);
59 : 0 : *expt = (hx >> 20) - (0x3ff + 1023) + k;
60 : 0 : SET_HIGH_WORD(exp_x, (hx & 0xfffff) | ((0x3ff + 1023) << 20));
61 : 0 : return (exp_x);
62 : : }
63 : :
64 : : /*
65 : : * __ldexp_exp(x, expt) and __ldexp_cexp(x, expt) compute exp(x) * 2**expt.
66 : : * They are intended for large arguments (real part >= ln(DBL_MAX))
67 : : * where care is needed to avoid overflow.
68 : : *
69 : : * The present implementation is narrowly tailored for our hyperbolic and
70 : : * exponential functions. We assume expt is small (0 or -1), and the caller
71 : : * has filtered out very large x, for which overflow would be inevitable.
72 : : */
73 : :
74 : : OLM_DLLEXPORT double
75 : 0 : __ldexp_exp(double x, int expt)
76 : : {
77 : : double exp_x, scale;
78 : : int ex_expt;
79 : :
80 : 0 : exp_x = __frexp_exp(x, &ex_expt);
81 : 0 : expt += ex_expt;
82 : 0 : INSERT_WORDS(scale, (0x3ff + expt) << 20, 0);
83 : 0 : return (exp_x * scale);
84 : : }
85 : :
86 : : OLM_DLLEXPORT double complex
87 : 0 : __ldexp_cexp(double complex z, int expt)
88 : : {
89 : : double x, y, exp_x, scale1, scale2;
90 : : int ex_expt, half_expt;
91 : :
92 : 0 : x = creal(z);
93 : 0 : y = cimag(z);
94 : 0 : exp_x = __frexp_exp(x, &ex_expt);
95 : 0 : expt += ex_expt;
96 : :
97 : : /*
98 : : * Arrange so that scale1 * scale2 == 2**expt. We use this to
99 : : * compensate for scalbn being horrendously slow.
100 : : */
101 : 0 : half_expt = expt / 2;
102 : 0 : INSERT_WORDS(scale1, (0x3ff + half_expt) << 20, 0);
103 : 0 : half_expt = expt - half_expt;
104 : 0 : INSERT_WORDS(scale2, (0x3ff + half_expt) << 20, 0);
105 : :
106 : 0 : return (CMPLX(cos(y) * exp_x * scale1 * scale2,
107 : : sin(y) * exp_x * scale1 * scale2));
108 : : }
|