LCOV - code coverage report
Current view: top level - src - k_log.h (source / functions) Coverage Total Hit
Test: app.info Lines: 100.0 % 9 9
Test Date: 2024-01-11 15:52:50 Functions: 100.0 % 1 1
Branches: - 0 0

             Branch data     Line data    Source code
       1                 :             : 
       2                 :             : /* @(#)e_log.c 1.3 95/01/18 */
       3                 :             : /*
       4                 :             :  * ====================================================
       5                 :             :  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       6                 :             :  *
       7                 :             :  * Developed at SunSoft, a Sun Microsystems, Inc. business.
       8                 :             :  * Permission to use, copy, modify, and distribute this
       9                 :             :  * software is freely granted, provided that this notice 
      10                 :             :  * is preserved.
      11                 :             :  * ====================================================
      12                 :             :  */
      13                 :             : 
      14                 :             : #include "cdefs-compat.h"
      15                 :             : //__FBSDID("$FreeBSD: src/lib/msun/src/k_log.h,v 1.2 2011/10/15 05:23:28 das Exp $");
      16                 :             : 
      17                 :             : /*
      18                 :             :  * k_log1p(f):
      19                 :             :  * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
      20                 :             :  *
      21                 :             :  * The following describes the overall strategy for computing
      22                 :             :  * logarithms in base e.  The argument reduction and adding the final
      23                 :             :  * term of the polynomial are done by the caller for increased accuracy
      24                 :             :  * when different bases are used.
      25                 :             :  *
      26                 :             :  * Method :                  
      27                 :             :  *   1. Argument Reduction: find k and f such that 
      28                 :             :  *                      x = 2^k * (1+f), 
      29                 :             :  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
      30                 :             :  *
      31                 :             :  *   2. Approximation of log(1+f).
      32                 :             :  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
      33                 :             :  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
      34                 :             :  *               = 2s + s*R
      35                 :             :  *      We use a special Reme algorithm on [0,0.1716] to generate 
      36                 :             :  *      a polynomial of degree 14 to approximate R The maximum error 
      37                 :             :  *      of this polynomial approximation is bounded by 2**-58.45. In
      38                 :             :  *      other words,
      39                 :             :  *                      2      4      6      8      10      12      14
      40                 :             :  *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
      41                 :             :  *      (the values of Lg1 to Lg7 are listed in the program)
      42                 :             :  *      and
      43                 :             :  *          |      2          14          |     -58.45
      44                 :             :  *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2 
      45                 :             :  *          |                             |
      46                 :             :  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
      47                 :             :  *      In order to guarantee error in log below 1ulp, we compute log
      48                 :             :  *      by
      49                 :             :  *              log(1+f) = f - s*(f - R)        (if f is not too large)
      50                 :             :  *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
      51                 :             :  *      
      52                 :             :  *      3. Finally,  log(x) = k*ln2 + log(1+f).  
      53                 :             :  *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
      54                 :             :  *         Here ln2 is split into two floating point number: 
      55                 :             :  *                      ln2_hi + ln2_lo,
      56                 :             :  *         where n*ln2_hi is always exact for |n| < 2000.
      57                 :             :  *
      58                 :             :  * Special cases:
      59                 :             :  *      log(x) is NaN with signal if x < 0 (including -INF) ; 
      60                 :             :  *      log(+INF) is +INF; log(0) is -INF with signal;
      61                 :             :  *      log(NaN) is that NaN with no signal.
      62                 :             :  *
      63                 :             :  * Accuracy:
      64                 :             :  *      according to an error analysis, the error is always less than
      65                 :             :  *      1 ulp (unit in the last place).
      66                 :             :  *
      67                 :             :  * Constants:
      68                 :             :  * The hexadecimal values are the intended ones for the following 
      69                 :             :  * constants. The decimal values may be used, provided that the 
      70                 :             :  * compiler will convert from decimal to binary accurately enough 
      71                 :             :  * to produce the hexadecimal values shown.
      72                 :             :  */
      73                 :             : 
      74                 :             : static const double
      75                 :             : Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
      76                 :             : Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
      77                 :             : Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
      78                 :             : Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
      79                 :             : Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
      80                 :             : Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
      81                 :             : Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
      82                 :             : 
      83                 :             : /*
      84                 :             :  * We always inline k_log1p(), since doing so produces a
      85                 :             :  * substantial performance improvement (~40% on amd64).
      86                 :             :  */
      87                 :             : static inline double
      88                 :          11 : k_log1p(double f)
      89                 :             : {
      90                 :             :         double hfsq,s,z,R,w,t1,t2;
      91                 :             : 
      92                 :          11 :         s = f/(2.0+f);
      93                 :          11 :         z = s*s;
      94                 :          11 :         w = z*z;
      95                 :          11 :         t1= w*(Lg2+w*(Lg4+w*Lg6));
      96                 :          11 :         t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
      97                 :          11 :         R = t2+t1;
      98                 :          11 :         hfsq=0.5*f*f;
      99                 :          11 :         return s*(hfsq+R);
     100                 :             : }
        

Generated by: LCOV version 2.0-115.g950771e