Branch data Line data Source code
1 : : /* k_tanf.c -- float version of k_tan.c
2 : : * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 : : * Optimized by Bruce D. Evans.
4 : : */
5 : :
6 : : /*
7 : : * ====================================================
8 : : * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
9 : : *
10 : : * Permission to use, copy, modify, and distribute this
11 : : * software is freely granted, provided that this notice
12 : : * is preserved.
13 : : * ====================================================
14 : : */
15 : :
16 : : #ifndef INLINE_KERNEL_TANDF
17 : : #include "cdefs-compat.h"
18 : : //__FBSDID("$FreeBSD: src/lib/msun/src/k_tanf.c,v 1.23 2009/06/03 08:16:34 ed Exp $");
19 : : #endif
20 : :
21 : : #include <openlibm_math.h>
22 : :
23 : : #include "math_private.h"
24 : :
25 : : /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
26 : : static const double
27 : : T[] = {
28 : : 0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
29 : : 0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
30 : : 0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
31 : : 0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
32 : : 0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
33 : : 0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
34 : : };
35 : :
36 : : #ifndef INLINE_KERNEL_TANDF
37 : : extern
38 : : #endif
39 : : //__inline float
40 : : OLM_DLLEXPORT float
41 : 2 : __kernel_tandf(double x, int iy)
42 : : {
43 : : double z,r,w,s,t,u;
44 : :
45 : 2 : z = x*x;
46 : : /*
47 : : * Split up the polynomial into small independent terms to give
48 : : * opportunities for parallel evaluation. The chosen splitting is
49 : : * micro-optimized for Athlons (XP, X64). It costs 2 multiplications
50 : : * relative to Horner's method on sequential machines.
51 : : *
52 : : * We add the small terms from lowest degree up for efficiency on
53 : : * non-sequential machines (the lowest degree terms tend to be ready
54 : : * earlier). Apart from this, we don't care about order of
55 : : * operations, and don't need to to care since we have precision to
56 : : * spare. However, the chosen splitting is good for accuracy too,
57 : : * and would give results as accurate as Horner's method if the
58 : : * small terms were added from highest degree down.
59 : : */
60 : 2 : r = T[4]+z*T[5];
61 : 2 : t = T[2]+z*T[3];
62 : 2 : w = z*z;
63 : 2 : s = z*x;
64 : 2 : u = T[0]+z*T[1];
65 : 2 : r = (x+s*u)+(s*w)*(t+w*r);
66 [ + + ]: 2 : if(iy==1) return r;
67 : 1 : else return -1.0/r;
68 : : }
|