LCOV - code coverage report
Current view: top level - src - s_cbrt.c (source / functions) Coverage Total Hit
Test: app.info Lines: 84.0 % 25 21
Test Date: 2024-01-11 15:52:50 Functions: 100.0 % 1 1
Branches: 83.3 % 6 5

             Branch data     Line data    Source code
       1                 :             : /* @(#)s_cbrt.c 5.1 93/09/24 */
       2                 :             : /*
       3                 :             :  * ====================================================
       4                 :             :  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       5                 :             :  *
       6                 :             :  * Developed at SunPro, a Sun Microsystems, Inc. business.
       7                 :             :  * Permission to use, copy, modify, and distribute this
       8                 :             :  * software is freely granted, provided that this notice
       9                 :             :  * is preserved.
      10                 :             :  * ====================================================
      11                 :             :  *
      12                 :             :  * Optimized by Bruce D. Evans.
      13                 :             :  */
      14                 :             : 
      15                 :             : #include "cdefs-compat.h"
      16                 :             : //__FBSDID("$FreeBSD: src/lib/msun/src/s_cbrt.c,v 1.17 2011/03/12 16:50:39 kargl Exp $");
      17                 :             : 
      18                 :             : #include <openlibm_math.h>
      19                 :             : 
      20                 :             : #include "math_private.h"
      21                 :             : 
      22                 :             : /* cbrt(x)
      23                 :             :  * Return cube root of x
      24                 :             :  */
      25                 :             : static const u_int32_t
      26                 :             :         B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
      27                 :             :         B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
      28                 :             : 
      29                 :             : /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
      30                 :             : static const double
      31                 :             : P0 =  1.87595182427177009643,           /* 0x3ffe03e6, 0x0f61e692 */
      32                 :             : P1 = -1.88497979543377169875,           /* 0xbffe28e0, 0x92f02420 */
      33                 :             : P2 =  1.621429720105354466140,          /* 0x3ff9f160, 0x4a49d6c2 */
      34                 :             : P3 = -0.758397934778766047437,          /* 0xbfe844cb, 0xbee751d9 */
      35                 :             : P4 =  0.145996192886612446982;          /* 0x3fc2b000, 0xd4e4edd7 */
      36                 :             : 
      37                 :             : OLM_DLLEXPORT double
      38                 :          11 : cbrt(double x)
      39                 :             : {
      40                 :             :         int32_t hx;
      41                 :             :         union {
      42                 :             :             double value;
      43                 :             :             u_int64_t bits;
      44                 :             :         } u;
      45                 :          11 :         double r,s,t=0.0,w;
      46                 :             :         u_int32_t sign;
      47                 :             :         u_int32_t high,low;
      48                 :             : 
      49                 :          11 :         EXTRACT_WORDS(hx,low,x);
      50                 :          11 :         sign=hx&0x80000000;                 /* sign= sign(x) */
      51                 :          11 :         hx  ^=sign;
      52         [ +  + ]:          11 :         if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
      53                 :             : 
      54                 :             :     /*
      55                 :             :      * Rough cbrt to 5 bits:
      56                 :             :      *    cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
      57                 :             :      * where e is integral and >= 0, m is real and in [0, 1), and "/" and
      58                 :             :      * "%" are integer division and modulus with rounding towards minus
      59                 :             :      * infinity.  The RHS is always >= the LHS and has a maximum relative
      60                 :             :      * error of about 1 in 16.  Adding a bias of -0.03306235651 to the
      61                 :             :      * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
      62                 :             :      * floating point representation, for finite positive normal values,
      63                 :             :      * ordinary integer divison of the value in bits magically gives
      64                 :             :      * almost exactly the RHS of the above provided we first subtract the
      65                 :             :      * exponent bias (1023 for doubles) and later add it back.  We do the
      66                 :             :      * subtraction virtually to keep e >= 0 so that ordinary integer
      67                 :             :      * division rounds towards minus infinity; this is also efficient.
      68                 :             :      */
      69         [ +  + ]:           8 :         if(hx<0x00100000) {          /* zero or subnormal? */
      70         [ +  - ]:           2 :             if((hx|low)==0)
      71                 :           2 :                 return(x);              /* cbrt(0) is itself */
      72                 :           0 :             SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
      73                 :           0 :             t*=x;
      74                 :           0 :             GET_HIGH_WORD(high,t);
      75                 :           0 :             INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0);
      76                 :             :         } else
      77                 :           6 :             INSERT_WORDS(t,sign|(hx/3+B1),0);
      78                 :             : 
      79                 :             :     /*
      80                 :             :      * New cbrt to 23 bits:
      81                 :             :      *    cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
      82                 :             :      * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
      83                 :             :      * to within 2**-23.5 when |r - 1| < 1/10.  The rough approximation
      84                 :             :      * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
      85                 :             :      * gives us bounds for r = t**3/x.
      86                 :             :      *
      87                 :             :      * Try to optimize for parallel evaluation as in k_tanf.c.
      88                 :             :      */
      89                 :           6 :         r=(t*t)*(t/x);
      90                 :           6 :         t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
      91                 :             : 
      92                 :             :     /*
      93                 :             :      * Round t away from zero to 23 bits (sloppily except for ensuring that
      94                 :             :      * the result is larger in magnitude than cbrt(x) but not much more than
      95                 :             :      * 2 23-bit ulps larger).  With rounding towards zero, the error bound
      96                 :             :      * would be ~5/6 instead of ~4/6.  With a maximum error of 2 23-bit ulps
      97                 :             :      * in the rounded t, the infinite-precision error in the Newton
      98                 :             :      * approximation barely affects third digit in the final error
      99                 :             :      * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
     100                 :             :      * before the final error is larger than 0.667 ulps.
     101                 :             :      */
     102                 :           6 :         u.value=t;
     103                 :           6 :         u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL;
     104                 :           6 :         t=u.value;
     105                 :             : 
     106                 :             :     /* one step Newton iteration to 53 bits with error < 0.667 ulps */
     107                 :           6 :         s=t*t;                          /* t*t is exact */
     108                 :           6 :         r=x/s;                          /* error <= 0.5 ulps; |r| < |t| */
     109                 :           6 :         w=t+t;                          /* t+t is exact */
     110                 :           6 :         r=(r-t)/(w+r);                  /* r-t is exact; w+r ~= 3*t */
     111                 :           6 :         t=t+t*r;                        /* error <= 0.5 + 0.5/3 + epsilon */
     112                 :             : 
     113                 :           6 :         return(t);
     114                 :             : }
     115                 :             : 
     116                 :             : #if (LDBL_MANT_DIG == 53)
     117                 :             : openlibm_weak_reference(cbrt, cbrtl);
     118                 :             : #endif
        

Generated by: LCOV version 2.0-115.g950771e