LCOV - code coverage report
Current view: top level - src - s_ctanh.c (source / functions) Coverage Total Hit
Test: app.info Lines: 0.0 % 24 0
Test Date: 2024-01-11 15:52:50 Functions: 0.0 % 2 0
Branches: 0.0 % 12 0

             Branch data     Line data    Source code
       1                 :             : /*-
       2                 :             :  * Copyright (c) 2011 David Schultz
       3                 :             :  * All rights reserved.
       4                 :             :  *
       5                 :             :  * Redistribution and use in source and binary forms, with or without
       6                 :             :  * modification, are permitted provided that the following conditions
       7                 :             :  * are met:
       8                 :             :  * 1. Redistributions of source code must retain the above copyright
       9                 :             :  *    notice unmodified, this list of conditions, and the following
      10                 :             :  *    disclaimer.
      11                 :             :  * 2. Redistributions in binary form must reproduce the above copyright
      12                 :             :  *    notice, this list of conditions and the following disclaimer in the
      13                 :             :  *    documentation and/or other materials provided with the distribution.
      14                 :             :  *
      15                 :             :  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
      16                 :             :  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
      17                 :             :  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
      18                 :             :  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
      19                 :             :  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
      20                 :             :  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      21                 :             :  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      22                 :             :  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      23                 :             :  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
      24                 :             :  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      25                 :             :  */
      26                 :             : 
      27                 :             : /*
      28                 :             :  * Hyperbolic tangent of a complex argument z = x + i y.
      29                 :             :  *
      30                 :             :  * The algorithm is from:
      31                 :             :  *
      32                 :             :  *   W. Kahan.  Branch Cuts for Complex Elementary Functions or Much
      33                 :             :  *   Ado About Nothing's Sign Bit.  In The State of the Art in
      34                 :             :  *   Numerical Analysis, pp. 165 ff.  Iserles and Powell, eds., 1987.
      35                 :             :  *
      36                 :             :  * Method:
      37                 :             :  *
      38                 :             :  *   Let t    = tan(x)
      39                 :             :  *       beta = 1/cos^2(y)
      40                 :             :  *       s    = sinh(x)
      41                 :             :  *       rho  = cosh(x)
      42                 :             :  *
      43                 :             :  *   We have:
      44                 :             :  *
      45                 :             :  *   tanh(z) = sinh(z) / cosh(z)
      46                 :             :  *
      47                 :             :  *             sinh(x) cos(y) + i cosh(x) sin(y)
      48                 :             :  *           = ---------------------------------
      49                 :             :  *             cosh(x) cos(y) + i sinh(x) sin(y)
      50                 :             :  *
      51                 :             :  *             cosh(x) sinh(x) / cos^2(y) + i tan(y)
      52                 :             :  *           = -------------------------------------
      53                 :             :  *                    1 + sinh^2(x) / cos^2(y)
      54                 :             :  *
      55                 :             :  *             beta rho s + i t
      56                 :             :  *           = ----------------
      57                 :             :  *               1 + beta s^2
      58                 :             :  *
      59                 :             :  * Modifications:
      60                 :             :  *
      61                 :             :  *   I omitted the original algorithm's handling of overflow in tan(x) after
      62                 :             :  *   verifying with nearpi.c that this can't happen in IEEE single or double
      63                 :             :  *   precision.  I also handle large x differently.
      64                 :             :  */
      65                 :             : 
      66                 :             : #include "cdefs-compat.h"
      67                 :             : //__FBSDID("$FreeBSD: src/lib/msun/src/s_ctanh.c,v 1.2 2011/10/21 06:30:16 das Exp $");
      68                 :             : 
      69                 :             : #include <openlibm_complex.h>
      70                 :             : #include <openlibm_math.h>
      71                 :             : 
      72                 :             : #include "math_private.h"
      73                 :             : 
      74                 :             : OLM_DLLEXPORT double complex
      75                 :           0 : ctanh(double complex z)
      76                 :             : {
      77                 :             :         double x, y;
      78                 :             :         double t, beta, s, rho, denom;
      79                 :             :         u_int32_t hx, ix, lx;
      80                 :             : 
      81                 :           0 :         x = creal(z);
      82                 :           0 :         y = cimag(z);
      83                 :             : 
      84                 :           0 :         EXTRACT_WORDS(hx, lx, x);
      85                 :           0 :         ix = hx & 0x7fffffff;
      86                 :             : 
      87                 :             :         /*
      88                 :             :          * ctanh(NaN + i 0) = NaN + i 0
      89                 :             :          *
      90                 :             :          * ctanh(NaN + i y) = NaN + i NaN               for y != 0
      91                 :             :          *
      92                 :             :          * The imaginary part has the sign of x*sin(2*y), but there's no
      93                 :             :          * special effort to get this right.
      94                 :             :          *
      95                 :             :          * ctanh(+-Inf +- i Inf) = +-1 +- 0
      96                 :             :          *
      97                 :             :          * ctanh(+-Inf + i y) = +-1 + 0 sin(2y)         for y finite
      98                 :             :          *
      99                 :             :          * The imaginary part of the sign is unspecified.  This special
     100                 :             :          * case is only needed to avoid a spurious invalid exception when
     101                 :             :          * y is infinite.
     102                 :             :          */
     103         [ #  # ]:           0 :         if (ix >= 0x7ff00000) {
     104         [ #  # ]:           0 :                 if ((ix & 0xfffff) | lx)    /* x is NaN */
     105         [ #  # ]:           0 :                         return (CMPLX(x, (y == 0 ? y : x * y)));
     106                 :           0 :                 SET_HIGH_WORD(x, hx - 0x40000000);      /* x = copysign(1, x) */
     107         [ #  # ]:           0 :                 return (CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
     108                 :             :         }
     109                 :             : 
     110                 :             :         /*
     111                 :             :          * ctanh(x + i NAN) = NaN + i NaN
     112                 :             :          * ctanh(x +- i Inf) = NaN + i NaN
     113                 :             :          */
     114         [ #  # ]:           0 :         if (!isfinite(y))
     115                 :           0 :                 return (CMPLX(y - y, y - y));
     116                 :             : 
     117                 :             :         /*
     118                 :             :          * ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the
     119                 :             :          * approximation sinh^2(huge) ~= exp(2*huge) / 4.
     120                 :             :          * We use a modified formula to avoid spurious overflow.
     121                 :             :          */
     122         [ #  # ]:           0 :         if (ix >= 0x40360000) {      /* x >= 22 */
     123                 :           0 :                 double exp_mx = exp(-fabs(x));
     124                 :           0 :                 return (CMPLX(copysign(1, x),
     125                 :             :                     4 * sin(y) * cos(y) * exp_mx * exp_mx));
     126                 :             :         }
     127                 :             : 
     128                 :             :         /* Kahan's algorithm */
     129                 :           0 :         t = tan(y);
     130                 :           0 :         beta = 1.0 + t * t;     /* = 1 / cos^2(y) */
     131                 :           0 :         s = sinh(x);
     132                 :           0 :         rho = sqrt(1 + s * s);  /* = cosh(x) */
     133                 :           0 :         denom = 1 + beta * s * s;
     134                 :           0 :         return (CMPLX((beta * rho * s) / denom, t / denom));
     135                 :             : }
     136                 :             : 
     137                 :             : OLM_DLLEXPORT double complex
     138                 :           0 : ctan(double complex z)
     139                 :             : {
     140                 :             : 
     141                 :             :         /* ctan(z) = -I * ctanh(I * z) */
     142                 :           0 :         z = ctanh(CMPLX(-cimag(z), creal(z)));
     143                 :           0 :         return (CMPLX(cimag(z), -creal(z)));
     144                 :             : }
        

Generated by: LCOV version 2.0-115.g950771e