LCOV - code coverage report
Current view: top level - src - s_fma.c (source / functions) Coverage Total Hit
Test: app.info Lines: 53.3 % 90 48
Test Date: 2024-01-11 15:52:50 Functions: 80.0 % 5 4
Branches: 40.5 % 42 17

             Branch data     Line data    Source code
       1                 :             : /*-
       2                 :             :  * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
       3                 :             :  * All rights reserved.
       4                 :             :  *
       5                 :             :  * Redistribution and use in source and binary forms, with or without
       6                 :             :  * modification, are permitted provided that the following conditions
       7                 :             :  * are met:
       8                 :             :  * 1. Redistributions of source code must retain the above copyright
       9                 :             :  *    notice, this list of conditions and the following disclaimer.
      10                 :             :  * 2. Redistributions in binary form must reproduce the above copyright
      11                 :             :  *    notice, this list of conditions and the following disclaimer in the
      12                 :             :  *    documentation and/or other materials provided with the distribution.
      13                 :             :  *
      14                 :             :  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
      15                 :             :  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      16                 :             :  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      17                 :             :  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
      18                 :             :  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
      19                 :             :  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
      20                 :             :  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
      21                 :             :  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
      22                 :             :  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
      23                 :             :  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
      24                 :             :  * SUCH DAMAGE.
      25                 :             :  */
      26                 :             : 
      27                 :             : #include "cdefs-compat.h"
      28                 :             : //__FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.8 2011/10/21 06:30:43 das Exp $");
      29                 :             : 
      30                 :             : #include <float.h>
      31                 :             : #include <openlibm_fenv.h>
      32                 :             : #include <openlibm_math.h>
      33                 :             : 
      34                 :             : #include "math_private.h"
      35                 :             : 
      36                 :             : /*
      37                 :             :  * A struct dd represents a floating-point number with twice the precision
      38                 :             :  * of a double.  We maintain the invariant that "hi" stores the 53 high-order
      39                 :             :  * bits of the result.
      40                 :             :  */
      41                 :             : struct dd {
      42                 :             :         double hi;
      43                 :             :         double lo;
      44                 :             : };
      45                 :             : 
      46                 :             : /*
      47                 :             :  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
      48                 :             :  * that both a and b are finite, but make no assumptions about their relative
      49                 :             :  * magnitudes.
      50                 :             :  */
      51                 :             : static inline struct dd
      52                 :           2 : dd_add(double a, double b)
      53                 :             : {
      54                 :             :         struct dd ret;
      55                 :             :         double s;
      56                 :             : 
      57                 :           2 :         ret.hi = a + b;
      58                 :           2 :         s = ret.hi - a;
      59                 :           2 :         ret.lo = (a - (ret.hi - s)) + (b - s);
      60                 :           2 :         return (ret);
      61                 :             : }
      62                 :             : 
      63                 :             : /*
      64                 :             :  * Compute a+b, with a small tweak:  The least significant bit of the
      65                 :             :  * result is adjusted into a sticky bit summarizing all the bits that
      66                 :             :  * were lost to rounding.  This adjustment negates the effects of double
      67                 :             :  * rounding when the result is added to another number with a higher
      68                 :             :  * exponent.  For an explanation of round and sticky bits, see any reference
      69                 :             :  * on FPU design, e.g.,
      70                 :             :  *
      71                 :             :  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
      72                 :             :  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
      73                 :             :  */
      74                 :             : static inline double
      75                 :           1 : add_adjusted(double a, double b)
      76                 :             : {
      77                 :             :         struct dd sum;
      78                 :             :         u_int64_t hibits, lobits;
      79                 :             : 
      80                 :           1 :         sum = dd_add(a, b);
      81         [ -  + ]:           1 :         if (sum.lo != 0) {
      82                 :           0 :                 EXTRACT_WORD64(hibits, sum.hi);
      83         [ #  # ]:           0 :                 if ((hibits & 1) == 0) {
      84                 :             :                         /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
      85                 :           0 :                         EXTRACT_WORD64(lobits, sum.lo);
      86                 :           0 :                         hibits += 1 - ((hibits ^ lobits) >> 62);
      87                 :           0 :                         INSERT_WORD64(sum.hi, hibits);
      88                 :             :                 }
      89                 :             :         }
      90                 :           1 :         return (sum.hi);
      91                 :             : }
      92                 :             : 
      93                 :             : /*
      94                 :             :  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
      95                 :             :  * that the result will be subnormal, and care is taken to ensure that
      96                 :             :  * double rounding does not occur.
      97                 :             :  */
      98                 :             : static inline double
      99                 :           0 : add_and_denormalize(double a, double b, int scale)
     100                 :             : {
     101                 :             :         struct dd sum;
     102                 :             :         u_int64_t hibits, lobits;
     103                 :             :         int bits_lost;
     104                 :             : 
     105                 :           0 :         sum = dd_add(a, b);
     106                 :             : 
     107                 :             :         /*
     108                 :             :          * If we are losing at least two bits of accuracy to denormalization,
     109                 :             :          * then the first lost bit becomes a round bit, and we adjust the
     110                 :             :          * lowest bit of sum.hi to make it a sticky bit summarizing all the
     111                 :             :          * bits in sum.lo. With the sticky bit adjusted, the hardware will
     112                 :             :          * break any ties in the correct direction.
     113                 :             :          *
     114                 :             :          * If we are losing only one bit to denormalization, however, we must
     115                 :             :          * break the ties manually.
     116                 :             :          */
     117         [ #  # ]:           0 :         if (sum.lo != 0) {
     118                 :           0 :                 EXTRACT_WORD64(hibits, sum.hi);
     119                 :           0 :                 bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
     120         [ #  # ]:           0 :                 if ((bits_lost != 1) ^ (int)(hibits & 1)) {
     121                 :             :                         /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
     122                 :           0 :                         EXTRACT_WORD64(lobits, sum.lo);
     123                 :           0 :                         hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
     124                 :           0 :                         INSERT_WORD64(sum.hi, hibits);
     125                 :             :                 }
     126                 :             :         }
     127                 :           0 :         return (ldexp(sum.hi, scale));
     128                 :             : }
     129                 :             : 
     130                 :             : /*
     131                 :             :  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
     132                 :             :  * that both a and b are normalized, so no underflow or overflow will occur.
     133                 :             :  * The current rounding mode must be round-to-nearest.
     134                 :             :  */
     135                 :             : static inline struct dd
     136                 :           1 : dd_mul(double a, double b)
     137                 :             : {
     138                 :             :         static const double split = 0x1p27 + 1.0;
     139                 :             :         struct dd ret;
     140                 :             :         double ha, hb, la, lb, p, q;
     141                 :             : 
     142                 :           1 :         p = a * split;
     143                 :           1 :         ha = a - p;
     144                 :           1 :         ha += p;
     145                 :           1 :         la = a - ha;
     146                 :             : 
     147                 :           1 :         p = b * split;
     148                 :           1 :         hb = b - p;
     149                 :           1 :         hb += p;
     150                 :           1 :         lb = b - hb;
     151                 :             : 
     152                 :           1 :         p = ha * hb;
     153                 :           1 :         q = ha * lb + la * hb;
     154                 :             : 
     155                 :           1 :         ret.hi = p + q;
     156                 :           1 :         ret.lo = p - ret.hi + q + la * lb;
     157                 :           1 :         return (ret);
     158                 :             : }
     159                 :             : 
     160                 :             : /*
     161                 :             :  * Fused multiply-add: Compute x * y + z with a single rounding error.
     162                 :             :  *
     163                 :             :  * We use scaling to avoid overflow/underflow, along with the
     164                 :             :  * canonical precision-doubling technique adapted from:
     165                 :             :  *
     166                 :             :  *      Dekker, T.  A Floating-Point Technique for Extending the
     167                 :             :  *      Available Precision.  Numer. Math. 18, 224-242 (1971).
     168                 :             :  *
     169                 :             :  * This algorithm is sensitive to the rounding precision.  FPUs such
     170                 :             :  * as the i387 must be set in double-precision mode if variables are
     171                 :             :  * to be stored in FP registers in order to avoid incorrect results.
     172                 :             :  * This is the default on FreeBSD, but not on many other systems.
     173                 :             :  *
     174                 :             :  * Hardware instructions should be used on architectures that support it,
     175                 :             :  * since this implementation will likely be several times slower.
     176                 :             :  */
     177                 :             : OLM_DLLEXPORT double
     178                 :          16 : fma(double x, double y, double z)
     179                 :             : {
     180                 :             :         double xs, ys, zs, adj;
     181                 :             :         struct dd xy, r;
     182                 :             :         int oround;
     183                 :             :         int ex, ey, ez;
     184                 :             :         int spread;
     185                 :             : 
     186                 :             :         /*
     187                 :             :          * Handle special cases. The order of operations and the particular
     188                 :             :          * return values here are crucial in handling special cases involving
     189                 :             :          * infinities, NaNs, overflows, and signed zeroes correctly.
     190                 :             :          */
     191   [ +  +  +  + ]:          16 :         if (x == 0.0 || y == 0.0)
     192                 :           8 :                 return (x * y + z);
     193         [ -  + ]:           8 :         if (z == 0.0)
     194                 :           0 :                 return (x * y);
     195   [ +  +  +  + ]:           8 :         if (!isfinite(x) || !isfinite(y))
     196                 :           6 :                 return (x * y + z);
     197         [ +  + ]:           2 :         if (!isfinite(z))
     198                 :           1 :                 return (z);
     199                 :             : 
     200                 :           1 :         xs = frexp(x, &ex);
     201                 :           1 :         ys = frexp(y, &ey);
     202                 :           1 :         zs = frexp(z, &ez);
     203                 :           1 :         oround = fegetround();
     204                 :           1 :         spread = ex + ey - ez;
     205                 :             : 
     206                 :             :         /*
     207                 :             :          * If x * y and z are many orders of magnitude apart, the scaling
     208                 :             :          * will overflow, so we handle these cases specially.  Rounding
     209                 :             :          * modes other than FE_TONEAREST are painful.
     210                 :             :          */
     211         [ -  + ]:           1 :         if (spread < -DBL_MANT_DIG) {
     212                 :           0 :                 feraiseexcept(FE_INEXACT);
     213         [ #  # ]:           0 :                 if (!isnormal(z))
     214                 :           0 :                         feraiseexcept(FE_UNDERFLOW);
     215   [ #  #  #  # ]:           0 :                 switch (oround) {
     216                 :           0 :                 case FE_TONEAREST:
     217                 :           0 :                         return (z);
     218                 :           0 :                 case FE_TOWARDZERO:
     219         [ #  # ]:           0 :                         if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
     220                 :           0 :                                 return (z);
     221                 :             :                         else
     222                 :           0 :                                 return (nextafter(z, 0));
     223                 :           0 :                 case FE_DOWNWARD:
     224         [ #  # ]:           0 :                         if ((x > 0.0) ^ (y < 0.0))
     225                 :           0 :                                 return (z);
     226                 :             :                         else
     227                 :           0 :                                 return (nextafter(z, -INFINITY));
     228                 :           0 :                 default:        /* FE_UPWARD */
     229         [ #  # ]:           0 :                         if ((x > 0.0) ^ (y < 0.0))
     230                 :           0 :                                 return (nextafter(z, INFINITY));
     231                 :             :                         else
     232                 :           0 :                                 return (z);
     233                 :             :                 }
     234                 :             :         }
     235         [ +  - ]:           1 :         if (spread <= DBL_MANT_DIG * 2)
     236                 :           1 :                 zs = ldexp(zs, -spread);
     237                 :             :         else
     238                 :           0 :                 zs = copysign(DBL_MIN, zs);
     239                 :             : 
     240                 :           1 :         fesetround(FE_TONEAREST);
     241                 :             : 
     242                 :             :         /*
     243                 :             :          * Basic approach for round-to-nearest:
     244                 :             :          *
     245                 :             :          *     (xy.hi, xy.lo) = x * y           (exact)
     246                 :             :          *     (r.hi, r.lo)   = xy.hi + z       (exact)
     247                 :             :          *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
     248                 :             :          *     result = r.hi + adj              (correctly rounded)
     249                 :             :          */
     250                 :           1 :         xy = dd_mul(xs, ys);
     251                 :           1 :         r = dd_add(xy.hi, zs);
     252                 :             : 
     253                 :           1 :         spread = ex + ey;
     254                 :             : 
     255         [ -  + ]:           1 :         if (r.hi == 0.0) {
     256                 :             :                 /*
     257                 :             :                  * When the addends cancel to 0, ensure that the result has
     258                 :             :                  * the correct sign.
     259                 :             :                  */
     260                 :           0 :                 fesetround(oround);
     261                 :           0 :                 volatile double vzs = zs; /* XXX gcc CSE bug workaround */
     262                 :           0 :                 return (xy.hi + vzs + ldexp(xy.lo, spread));
     263                 :             :         }
     264                 :             : 
     265         [ -  + ]:           1 :         if (oround != FE_TONEAREST) {
     266                 :             :                 /*
     267                 :             :                  * There is no need to worry about double rounding in directed
     268                 :             :                  * rounding modes.
     269                 :             :                  */
     270                 :           0 :                 fesetround(oround);
     271                 :           0 :                 adj = r.lo + xy.lo;
     272                 :           0 :                 return (ldexp(r.hi + adj, spread));
     273                 :             :         }
     274                 :             : 
     275                 :           1 :         adj = add_adjusted(r.lo, xy.lo);
     276         [ +  - ]:           1 :         if (spread + ilogb(r.hi) > -1023)
     277                 :           1 :                 return (ldexp(r.hi + adj, spread));
     278                 :             :         else
     279                 :           0 :                 return (add_and_denormalize(r.hi, adj, spread));
     280                 :             : }
     281                 :             : 
     282                 :             : #if (LDBL_MANT_DIG == 53)
     283                 :             : openlibm_weak_reference(fma, fmal);
     284                 :             : #endif
        

Generated by: LCOV version 2.0-115.g950771e