LCOV - code coverage report
Current view: top level - src - s_log1p.c (source / functions) Coverage Total Hit
Test: app.info Lines: 71.4 % 49 35
Test Date: 2024-01-11 15:52:50 Functions: 100.0 % 1 1
Branches: 61.1 % 36 22

             Branch data     Line data    Source code
       1                 :             : /* @(#)s_log1p.c 5.1 93/09/24 */
       2                 :             : /*
       3                 :             :  * ====================================================
       4                 :             :  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       5                 :             :  *
       6                 :             :  * Developed at SunPro, a Sun Microsystems, Inc. business.
       7                 :             :  * Permission to use, copy, modify, and distribute this
       8                 :             :  * software is freely granted, provided that this notice
       9                 :             :  * is preserved.
      10                 :             :  * ====================================================
      11                 :             :  */
      12                 :             : 
      13                 :             : #include "cdefs-compat.h"
      14                 :             : //__FBSDID("$FreeBSD: src/lib/msun/src/s_log1p.c,v 1.10 2008/03/29 16:37:59 das Exp $");
      15                 :             : 
      16                 :             : /* double log1p(double x)
      17                 :             :  *
      18                 :             :  * Method :
      19                 :             :  *   1. Argument Reduction: find k and f such that
      20                 :             :  *                      1+x = 2^k * (1+f),
      21                 :             :  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
      22                 :             :  *
      23                 :             :  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
      24                 :             :  *      may not be representable exactly. In that case, a correction
      25                 :             :  *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
      26                 :             :  *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
      27                 :             :  *      and add back the correction term c/u.
      28                 :             :  *      (Note: when x > 2**53, one can simply return log(x))
      29                 :             :  *
      30                 :             :  *   2. Approximation of log1p(f).
      31                 :             :  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
      32                 :             :  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
      33                 :             :  *               = 2s + s*R
      34                 :             :  *      We use a special Reme algorithm on [0,0.1716] to generate
      35                 :             :  *      a polynomial of degree 14 to approximate R The maximum error
      36                 :             :  *      of this polynomial approximation is bounded by 2**-58.45. In
      37                 :             :  *      other words,
      38                 :             :  *                      2      4      6      8      10      12      14
      39                 :             :  *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
      40                 :             :  *      (the values of Lp1 to Lp7 are listed in the program)
      41                 :             :  *      and
      42                 :             :  *          |      2          14          |     -58.45
      43                 :             :  *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
      44                 :             :  *          |                             |
      45                 :             :  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
      46                 :             :  *      In order to guarantee error in log below 1ulp, we compute log
      47                 :             :  *      by
      48                 :             :  *              log1p(f) = f - (hfsq - s*(hfsq+R)).
      49                 :             :  *
      50                 :             :  *      3. Finally, log1p(x) = k*ln2 + log1p(f).
      51                 :             :  *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
      52                 :             :  *         Here ln2 is split into two floating point number:
      53                 :             :  *                      ln2_hi + ln2_lo,
      54                 :             :  *         where n*ln2_hi is always exact for |n| < 2000.
      55                 :             :  *
      56                 :             :  * Special cases:
      57                 :             :  *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
      58                 :             :  *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
      59                 :             :  *      log1p(NaN) is that NaN with no signal.
      60                 :             :  *
      61                 :             :  * Accuracy:
      62                 :             :  *      according to an error analysis, the error is always less than
      63                 :             :  *      1 ulp (unit in the last place).
      64                 :             :  *
      65                 :             :  * Constants:
      66                 :             :  * The hexadecimal values are the intended ones for the following
      67                 :             :  * constants. The decimal values may be used, provided that the
      68                 :             :  * compiler will convert from decimal to binary accurately enough
      69                 :             :  * to produce the hexadecimal values shown.
      70                 :             :  *
      71                 :             :  * Note: Assuming log() return accurate answer, the following
      72                 :             :  *       algorithm can be used to compute log1p(x) to within a few ULP:
      73                 :             :  *
      74                 :             :  *              u = 1+x;
      75                 :             :  *              if(u==1.0) return x ; else
      76                 :             :  *                         return log(u)*(x/(u-1.0));
      77                 :             :  *
      78                 :             :  *       See HP-15C Advanced Functions Handbook, p.193.
      79                 :             :  */
      80                 :             : 
      81                 :             : #include <float.h>
      82                 :             : #include <openlibm_math.h>
      83                 :             : 
      84                 :             : #include "math_private.h"
      85                 :             : 
      86                 :             : static const double
      87                 :             : ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
      88                 :             : ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
      89                 :             : two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
      90                 :             : Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
      91                 :             : Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
      92                 :             : Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
      93                 :             : Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
      94                 :             : Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
      95                 :             : Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
      96                 :             : Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
      97                 :             : 
      98                 :             : static const double zero = 0.0;
      99                 :             : 
     100                 :             : OLM_DLLEXPORT double
     101                 :          13 : log1p(double x)
     102                 :             : {
     103                 :             :         double hfsq,f,c,s,z,R,u;
     104                 :             :         int32_t k,hx,hu,ax;
     105                 :             : 
     106                 :          13 :         GET_HIGH_WORD(hx,x);
     107                 :          13 :         ax = hx&0x7fffffff;
     108                 :             : 
     109                 :          13 :         k = 1;
     110         [ +  + ]:          13 :         if (hx < 0x3FDA827A) {                       /* 1+x < sqrt(2)+ */
     111         [ +  + ]:           7 :             if(ax>=0x3ff00000) {             /* x <= -1.0 */
     112         [ +  + ]:           3 :                 if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
     113                 :           2 :                 else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */
     114                 :             :             }
     115         [ +  + ]:           4 :             if(ax<0x3e200000) {                      /* |x| < 2**-29 */
     116         [ +  - ]:           3 :                 if(two54+x>zero                      /* raise inexact */
     117         [ +  - ]:           3 :                     &&ax<0x3c900000)                 /* |x| < 2**-54 */
     118                 :           3 :                     return x;
     119                 :             :                 else
     120                 :           0 :                     return x - x*x*0.5;
     121                 :             :             }
     122   [ +  -  -  + ]:           1 :             if(hx>0||hx<=((int32_t)0xbfd2bec4)) {
     123                 :           0 :                 k=0;f=x;hu=1;}          /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
     124                 :             :         }
     125         [ +  + ]:           7 :         if (hx >= 0x7ff00000) return x+x;
     126         [ +  - ]:           6 :         if(k!=0) {
     127         [ +  - ]:           6 :             if(hx<0x43400000) {
     128                 :           6 :                 STRICT_ASSIGN(double,u,1.0+x);
     129                 :           6 :                 GET_HIGH_WORD(hu,u);
     130                 :           6 :                 k  = (hu>>20)-1023;
     131         [ +  + ]:           6 :                 c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
     132                 :           6 :                 c /= u;
     133                 :             :             } else {
     134                 :           0 :                 u  = x;
     135                 :           0 :                 GET_HIGH_WORD(hu,u);
     136                 :           0 :                 k  = (hu>>20)-1023;
     137                 :           0 :                 c  = 0;
     138                 :             :             }
     139                 :           6 :             hu &= 0x000fffff;
     140                 :             :             /*
     141                 :             :              * The approximation to sqrt(2) used in thresholds is not
     142                 :             :              * critical.  However, the ones used above must give less
     143                 :             :              * strict bounds than the one here so that the k==0 case is
     144                 :             :              * never reached from here, since here we have committed to
     145                 :             :              * using the correction term but don't use it if k==0.
     146                 :             :              */
     147         [ +  + ]:           6 :             if(hu<0x6a09e) {                 /* u ~< sqrt(2) */
     148                 :           2 :                 SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
     149                 :             :             } else {
     150                 :           4 :                 k += 1;
     151                 :           4 :                 SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
     152                 :           4 :                 hu = (0x00100000-hu)>>2;
     153                 :             :             }
     154                 :           6 :             f = u-1.0;
     155                 :             :         }
     156                 :           6 :         hfsq=0.5*f*f;
     157         [ -  + ]:           6 :         if(hu==0) {     /* |f| < 2**-20 */
     158         [ #  # ]:           0 :             if(f==zero) {
     159         [ #  # ]:           0 :                 if(k==0) {
     160                 :           0 :                     return zero;
     161                 :             :                 } else {
     162                 :           0 :                     c += k*ln2_lo;
     163                 :           0 :                     return k*ln2_hi+c;
     164                 :             :                 }
     165                 :             :             }
     166                 :           0 :             R = hfsq*(1.0-0.66666666666666666*f);
     167         [ #  # ]:           0 :             if(k==0) return f-R; else
     168                 :           0 :                      return k*ln2_hi-((R-(k*ln2_lo+c))-f);
     169                 :             :         }
     170                 :           6 :         s = f/(2.0+f);
     171                 :           6 :         z = s*s;
     172                 :           6 :         R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
     173         [ -  + ]:           6 :         if(k==0) return f-(hfsq-s*(hfsq+R)); else
     174                 :           6 :                  return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
     175                 :             : }
     176                 :             : 
     177                 :             : #if (LDBL_MANT_DIG == 53)
     178                 :             : openlibm_weak_reference(log1p, log1pl);
     179                 :             : #endif
        

Generated by: LCOV version 2.0-115.g950771e